P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex.
نویسندگان
چکیده
The Cav2.1 (P/Q-) and Cav2.2 (N-type) voltage-gated calcium channels (VGCCs) play a predominant role in neurotransmitter release at central synapses, but their distribution is not uniform across different types of synapses. Although the functional significance of the differential distribution of N- and P/Q-type VGCCs is poorly understood, distinct types of VGCCs appear to differentially affect synaptic properties. For example, P/Q-type VGCCs are located closer to release sites and are less affected by G-protein-mediated inhibition than are N-type VGCCs. Thus P/Q-type VGCCs might be beneficial at synapses with high probability of release and precise timing of neurotransmission, such as the inhibitory inputs from parvalbumin-containing fast-spiking (FS) interneurons to pyramidal cells (PCs) in the neocortex. To determine whether VGCCs types predominate at synapses from FS interneurons to PCs in rat prefrontal cortex, whole cell paired recordings (n = 14) combined with intracellular labeling and fluorescence immunohistochemistry for parvalbumin were performed in acute slices. Bath application of the specific N-type VGCC blocker omega-conotoxin-GVIa (1 microM) did not alter inhibitory postsynaptic potential amplitude, failure rate, or synaptic dynamics; in contrast, application of P/Q-type VGCC blocker omega-agatoxin-IVa (0.5 microM) completely and irreversibly blocked neurotransmission. These results indicate that P/Q-type VGCCs mediate the GABA release from parvalbumin-positive FS interneurons to PCs in the rat neocortex.
منابع مشابه
Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex.
To study the type of presynaptic calcium channels controlling transmitter release at synaptic connections displaying depression or facilitation, dual whole cell recordings combined with biocytin labelling were performed in acute slices from motor cortex of 17- to 22-day-old rats. Layer V postsynaptic interneurons displayed either fast spiking (FS) (n = 12) or burst firing (BF) (n = 12) behaviou...
متن کاملEither N- or P-type Calcium Channels Mediate GABA Release at Distinct Hippocampal Inhibitory Synapses
Transmitter release at most central synapses depends on multiple types of calcium channels. Identification of the channels mediating GABA release in hippocampus is complicated by the heterogeneity of interneurons. Unitary IPSPs were recorded from pairs of inhibitory and pyramidal cells in hippocampal slice cultures. The N-type channel antagonist omega-conotoxin MVIIA abolished IPSPs generated b...
متن کاملDistinct Ca Channels Mediate Transmitter Release at Excitatory Synapses Displaying Different Dynamic Properties in Rat Neocortex
To study the type of presynaptic calcium channels controlling transmitter release at synaptic connections displaying depression or facilitation, dual whole cell recordings combined with biocytin labelling were performed in acute slices from motor cortex of 17to 22-day-old rats. Layer V postsynaptic interneurons displayed either fast spiking (FS) (n 5 12) or burst firing (BF) (n 5 12) behaviour....
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملProlonged exposure to NMDAR antagonist induces cell-type specific changes of glutamatergic receptors in rat prefrontal cortex.
N-methyl-d-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2007